Current Issue : July-September Volume : 2022 Issue Number : 3 Articles : 5 Articles
A new low‐profile flexible RFID tag antenna operating in the ultra‐high frequency (UHF) European band (865 MHz–868 MHz) is proposed for blood bag traceability. Its structure combines inductive and capacitive parts with nested slots allowing for the achieving of conjugate impedance matching with the IC‐chip. The whole electrical parameters of the environment (substrate, bag, and blood) were considered for the design of the tag antenna. A good agreement was obtained between the measurements and electromagnetic simulations for the input impedance of the tag antenna in the UHF band. A reading range close to 2.5 m was experimentally obtained. Therefore, this tag antenna could be effective and useful in future RFID systems for blood bag monitoring, thus improving patient safety in healthcare infrastructures....
Implantable medical devices have been facing the severe challenge of wireless communication for a long time. Acoustically actuated magnetoelectric (ME) transducer antennas have attracted lots of attention due to their miniaturization, high radiation efficiency and easy integration. Here, we fully demonstrate the possibility of using only one bulk acoustic wave (BAW) actuated ME transducer antenna (BAW ME antenna) for communication by describing the correspondence between the BAW ME antenna and components of the traditional transmitter in detail. Specifically, we first demonstrate that the signal could be modulated by applying a direct current (DC) magnetic bias and exciting different resonance modes of the BAW ME antenna with frequencies ranging from medium frequency (MF) (1.5 MHz) to medium frequency (UHF) (2 GHz). Then, two methods of adjusting the radiation power of the BAW ME antenna are proposed to realize signal amplification, including increasing the input voltage and using higher order resonance. Finally, a method based on electromagnetic (EM) perturbation is presented to simulate the transmission process of the BAW ME antenna via the finite element analysis (FEA) model. The simulation results match the radiation pattern of magnetic dipoles perfectly, which verifies both the model and our purpose....
This paper proposes a four-element ultrawideband (UWB) planar antenna array with elliptical- shaped radiators and a stripline excitation network designed for the 6–8.5 GHz UWB frequency band allowed in Europe by the European Commission. The designed antenna array has a symmetrical structure in which the radiators are placed along one line in the central conducting layer, arranged between two layers of a dielectric. Radiating elements are fed by the stripline excitation network that provides uniform power distribution. The dimensions of the elliptical radiators’ axes are 14 mm × 16 mm. Two variants of array are proposed. The distance between the radiators’ centers is L = 19 mm for a shorter variant and L = 24 mm for a longer one. The presented antenna array structures have a size of 81 mm × 41 mm and 96 mm × 41 mm. These arrays present a measured gain of 6.4–10.6 dBi for the shorter variant and 8.5–10.8 dBi for the longer one and a fair impedance matching. The measured |S11| is less than 8.7 dB and 9.7 dB for the shorter and longer corresponding variants....
This paper presents the analysis and design of an X-band reflectarray. The proposed antenna can be used for a medium Earth orbit (MEO) remote sensing satellite system in the 8.5 GHz band. To obtain a nearly constant response along the coverage area of this satellite system, the proposed antenna was designed with a flat-top radiation pattern with a beam width of around 29 for the required MEO system. In addition, broadside pencil beam and tilted pencil beam reflectarrays were also investigated. The feeding element of the proposed reflectarray antennas is a Yagi–Uda array. The amplitude and phase distribution of the fields due to the feeding element on the aperture of the reflectarray antenna are obtained directly by numerical simulation without introducing any approximation. The required phase distribution along the aperture of the reflectarray to obtain the required flat-top radiation pattern is obtained using the genetic algorithm (GA) optimization method. The reflecting elements of the reflectarray are composed of stacked circular patches. This stacked configuration was found to be appropriate for obtaining a wide range of reflection phase shift, which is required to implement the required phase distribution on the reflectarray aperture. The antenna was fabricated and measured for verification....
This paper presents an over-the-air testing method in which a full-rank channel matrix is created for a massive multiple-input multiple-output (MIMO) antenna system utilizing a fading emulator with a small number of scatterers. In the proposed method, in order to mimic a fading emulator with a large number of scatterers, the scatterers are virtually positioned by rotating the massive MIMO antenna. The performance of a 64-element quasi-half-wavelength dipole circular array antenna was evaluated using a two-dimensional fading emulator. The experimental results reveal that a large number of available eigenvalues are obtained from the channel response matrix, confirming that the proposed method, which utilizes a full-rank channel matrix, can be used to assess a massive MIMO antenna system....
Loading....